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Parallel flows with Soret effect in tilted cylinders 
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KASA Lewis Research Center, Cleveland, OH 44135, USA 

(Received 10 January 1989 and in revised form 24 July 1989) 

Henry & Roux have recently conducted extensive numerical studies on the 
interaction of Soret separation with convection in cylindrical geometry. Many of 
their solutions exhibit parallel flow away from endwalls. We show that their parallel 
flow results can be matched by closed-form solutions. We find that solutions are non- 
unique in some parameter regions. Disappearance of one branch of solutions 
correlates with a sudden transition of Henry & ROUX’S results from a separated to a 
well-mixed flow. 

1. Introduction 
A temperature gradient in a multicomponent fluid often tends to force gradients 

in composition. This is known as the Soret effect. Much experimental work has been 
carried out to determine Soret separations and coefficients in binary fluids. However, 
these experiments must contend with convective effects, which tend to mix the fluid. 
Convective transport can easily overwhelm diffusion in binary mixtures that have 
low molecular diffusivities. 

Because of this problem with convection, there has been an interest in carrying out 
experiments in microgravity. Even then, though, convective effects are not 
necessarily negligible. Further, there is the problem that the orientation of the mean 
acceleration vector that forces convection is arbitrary and perhaps unknown. 

Henry & Roux (1986, 1987, 1988) have recently carried out extensive numerical 
studies to evaluate the possible effects of steady microgravity accelerations. They 
considered convection-diffusion with Soret effect in a cylinder tilted a t  various 
angles to the acceleration. They determined the extent of modification of Soret 
separation by convection and determined regimes in which this modification is 
minimal. In their first paper they considered a horizontal cylinder at low Grashof 
numbers, in their second various angles of tilt a t  low Grashof numbers, and in their 
third a nearly vertical (‘ quasi-vertical ’) cylinder a t  Grashof numbers ranging from 
482 to 4820. The Schmidt number for all their calculations was 60 and the Prandtl 
number 0.6. One of their most interesting results is that when the cylinder is quasi- 
vertical the transition from the separated to a well-mixed regime is very sudden, 
having the appearance of a bifurcation. 

One prominent feature of most of their solutions is that they exhibit parallel flow 
away from the cylinder endwalls. This was apparent to Henry & Roux (hereinafter 
referred to as HR) and much of their analysis deals with the local force and mass 
balances of the parallel regime. However, they fail to take the next step of deriving 
parallel flow solutions. 

This paper derives approximate parallel flow solutions that neglect convection by 
the secondary radial and azimuthal flows. Solutions are also simplified by treating 
the temperature as being imposed. This is generally acceptable for modelling HR’s 
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results, which, partly because of their calculations' low Prandtl number, show a 
temperature field that is nearly linear and little affected by convection. 

The result of greatest interest is that solutions can be non-unique. A parallel flow 
solution can be found for any given set of flow parameters and any given axial 
gradient of solute. However, for this solution to be relevant to cylinders with 
endwalls it must meet the condition of having no net solute flux. This condition adds 
significant nonlinearity to the problem. Different sets of flow parameters can yield 
different numbers of solutions. This turns out to be especially important for 
understanding the quasi-vertical case. Disappearance of one solution branch will be 
shown to correspond to a sudden transition in flow behaviour observed by HR. Non- 
unique solutions will also be shown to exist for the horizontal cylinder. 

The paper proceeds as follows. We derive the parallel flow solutions and flux 
conditions in $2. Solutions for the axial solute gradient are discussed in $3, with 
results compared to those of HR. Emphasis will be put on discussing solution 
behaviour in parameter regions of non-uniqueness. Also, the boundaries of these 
regions will be determined. 

2. Solution 
We consider Boussinesq flow in a cylinder with radius R and length L.  The aspect 

ratio L / R  is 9 1. We are interested in the flow away from the cylinder's endwalls, 
where the flow can be approximated as parallel. The cylinder is tilted at an angle y, 
-180" < y < +180", to a steady acceleration vector g. The y = 0" and +lSO" 
positions are vertical; y = k90" is horizontal. y = 0" is the upward vertical position. 
Following HR, in the up (down) position the cylinder is heated from above (below). 
The temperature gradient in the down position is thus potentially unstable. Also 
following HR, 'quasi-vertical ' refers only to angles of tilt near the up position. The 
flow has symmetry properties about y = 0" so there is no need to separately consider 
left and right positions. The coordinate system, which is the same as HR's, is shown 
in figure 1. The coordinates are arranged so that the axial coordinate increases 
downwards for IyI < 90" and so that the 0 = 90" and 270" lines are in the horizontal 
plane. 

The primary flow variables are the axial velocity w, the secondary radial and 
azimuthal flows u and v, the pressure p ,  and the solute concentration X. The 
temperature T is imposed. This amounts to approximating the flow's Prandtl 
number, Pr = v/DTT, as being zero. Following HR, we take the relationship between 
density and temperature and concentration to be 

P = P0[1--a(T--T,)+B(X-Xo)l. 
The diffusive flux of solute is given by -D,,WT-D,,WX. D,, is the Soret 
diffusion coefficient. The Boussinesq equations are non-dimensionalized by scaling 
length, velocity, temperature, and solute concentration by, respectively, 

The resulting non-dimensional parameters are the Grashof number Gr = 
ollgl R41i3T/azl/v2, the Schmidt number Sc = v/D,,, and S = ~ D T x / a D X x .  S relates 
the non-dimensional concentration gradient to the non-dimensional density gradient. 
We use the same symbols for non-dimensional as for dimensional variables. After 
non-dimensionalization, the imposed temperature equals - z. 
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I 

FIGURE 1. The coordinate system. 

In order to obtain analytic solutions, it is necessary to simplify the Boussinesq 
equations by neglecting convection by the secondary radial and azimuthal flows. 
This is acceptable so long as these flows are ‘small enough’. Their magnitude will be 
discussed after the flow field solutions are derived. However, we note now that the 
secondary flows are caused by x = rsin8 gradients of deneity and that these 
gradients are usually quite small. In non-dimensional variables, the forcing of axial 
vorticity by these gradients is given by -sin yStlX/ax. HR give plots for the 
horizontally inclined cylinder that indicate an average IaX/axl of only about 0.015. 
For S positive, as the cylinder is moved towards the upward position the average 
I&f/azl becomes considerably smaller. This is because, as discussed by HR and for 
related problems by Hart (1971) and by Paliwal & Chen (1980), X then tends to a 
linear function of y = rcosO except in boundary layers at  r = 1. These boundary 
layers become thinner as either S or the product GrSc is increased. 

With non-dimensionalization and after the above approximations, the Boussinesq 
equation set is 

(2.1 a) 

(2.1 b)  aP 
a2 

--+cosy(-T+SX)+V*W = 0, 

aP 2 av 
--+sin y cos O( - T+ SX) + V2u- -- -- = 0, 

ar r2 r2a0 
(2‘1 c) 
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where 

v 2 a u  
--I- lap sinysin6(-T+SX)+V2v----- = 0, 

r 38 r2 r2a6 (2.ld) 

(2.1 e) 

Exceptions to HR's notation in the above are that Qr Sc is replaced by A and their 
unit acceleration vector g' that multiplies -T+SX is given in terms of its 
components {cos y ,  sin y cos 6, -sin y sin 8). Again, the temperature is imposed as 
T = - z .  

Neglect of convection by secondary flows partly decouples the system and allows 
solution in the form 

w = cos6wl(r), u = cos28u2(r), v = sin28v2(r), 

X = X ,  z + cos 6X,(r ) ,  

The total concentration flux is given by 

p = cos Op,, rz +p,, z2 +po(r)  + cos 28p2(r). 

F = A 1; cos2i3 W ,  X ,  r dr  d8 - 7 c ( T ,  + X , ) .  

This serves to fix X,, since F must be zero for the solution to  be relevant to a cylinder 
with endwalls. Setting T,  = - 1 ,  and after evaluation of the &integral, the no-flux 
condition becomes 

X ,  = l + A  w,X,rdr. (2.3) I,' 
In the absence of convection, the unique solution from (2.3) is X, = - T,  = 1. This is 
the diffueion-dominated, Soret separated solution. However, this solution produces 
the density gradient 1 +5, so it is inconsistent with (2.1) except when S = - 1 or 
when the cylinder is vertical. 

We proceed now to the solution. The r and 8 momentum equations give 

p,, = sin y(  1 + SX,). 

The z momentum equation then gives 

p,, = ~cosy( l+SX,) .  

The w, and XI equations become 

d2W, Idw, 1 - +-- - -ww,+hX,  = qr, 
dr2 r dr  r2 

(2 .4a)  

(2.4b) 

where h = cosyS, q = siny(l+SX,), s = AX,. 
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Boundary conditions are that w1 = X, = 0 a t  r = 0 and w1 = dX,/dr = 0 a t  r = 1. 
Once X, is known, pa,  u,, w, and p ,  can be determined from 

= isin ~ s x , ,  
dr 

du, 1 2 
-+-u,+-w, = 0, 
dr r r 

d2u, 1 5 4 dp, 
dr2 r r2 * r2 dr  
d2w, 1 5 4 2 
-+-v,--v ---u + - p ,  = +:sin ySX,.  
dr2 r r2 r2  r 

-+-u --u --v ___ = -'sin y,"x 
1 7  

( 2 . 5 ~ )  

(2 .56 )  

( 2 . 5 ~ )  

( 2 . 5 d )  

In  the present approximation u, and v, are not needed to determine X,. We will 
derive them in order to determine the parameter ranges in which they are small. 

2.1. Cos y S  positive 
The solution takes different forms depending on whether or not 60s yS is positive, 
zero, or negative. For cosy S positive, solution is in terms of Kelvin functions. Then 

w1 = A ber,(mr) + B  bei,(mr), ( 2 . 6 ~ )  

(2 .6b)  

( 2 . 6 ~ )  

(2 .6d )  

where a prime indicates the derivative with respect to m, and m = (Icos ys l  AXz$. (Xz, 
as will be shown in $3, is positive, so m is real and positive.) The secondary flows are 
u2 = atan yA(ber,(mr)+ ber,(mr))+$tan yB(bei3(mr)+bei,(mr))-2Cr3+3Cr, (2 .7a )  
v 2  = t tan y A (ber,(mr) - ber,(mr)) + a tan y B(bei,(mr) - bei,(mr)) + 4Cr3 - 3Cr, (2.7 b )  

C = -$tan y A  ber,(m)-itan yBbei,(m). ( 2 . 7 ~ )  
The convective flux integral in (2.3) can be evaluated using formulae given in 

X - -7+-[A P m2 bei,(mr)-Bber,(mr)], 
l - h  h 

bei,(m) A = - -  4 
m3 ber,(m) ber;(m) + bei,(m) bei;(m) ' 

m3 ber,(m) beri(m) + bei,(m) bei',(m) ' 
B = + -  4 ber,(m) 

Abramowitz & Stegun (1964). We write the integral as 

4 4 m2 m2 
h h h  

A - I ,  +B  - I2  + - ( A  2 -B2) I ,  + -+I*, 

with I ,  = J:r2berl(mr)dr = m 

I ,  = r2 bei,(mr) dr = 
m 

( 2 . 8 ~ )  

(2 .8b)  

I3 = r bei,(mr) ber,(mr) dr = a( - ber, bei, + 2 ber, bei, - ber, bei,), ( 2 . 8 ~ )  J, 
I, = r(beii(mr) - beri(mr)) dr = $(bei; - bei, bei, - ber: + ber, ber,). ( 2 . 8 d )  1: 
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The argument (m) of the Kelvin functions on the right-hand side of (2.8) has been 
omitted for conciseness. Using 

m 
1 

m 

1 
m 

1 
m 

1 
m 

ber, = -- ber', - bei; + - ber, - 

ber; + beii + - ber, + 

ber', - bei', -- ber, + 

beri + bei; -- ber, 

m 

m 

m 

the flux equation becomes 

p , ,  ql ,  and r1 are monotonically increasing Kelvin function cross-products (the 
notation follows Abramowitz & Stegun). For general order v they, along with one 
other cross-product s,, are 

p ,  = ber; + bei;, 

rv = ber, ber: + bei, bei:, 

q, = ber, bei: - bei, ber:, 

s, = her:, + beiL2. 

Recursion relationships (Abramowitz & Stegun) for these cross-products can be 
manipulated to give p , ,  q,, and r ,  in terms of q,, r,, and so: 

1 
m p ,  = so, q, = T o ,  r ,  = qo--so. 

The advantage of these latter cross-products is that they are somewhat more 
thoroughly documented and described in the mathematical literature. 

The various Kelvin function cross-products needed to evaluate Y+(m) can be 
calculated using Taylor series given by Abramowitz & Stegun. Numerical evaluation 
of the series is straightforward and turns out to be quite efficient. For small m, some 
algebra (using MACSYMA) yields 

23 77 

m'2+407686348800 (2.10) 
ma+ 

46080 82575360 
1 91 

32 18432 212336640m12 

P+(m) = 
1 + - m 4 + L m 8 +  

(2.11) 

Remembering that m = ( ( c o s y X J X , A ) ~ ,  equation (2.9) can be approximated using 
(2.11) as 

X, x 1-A2sin2y(l+XX,)2X, -- 41 cosysiix,). (2.12) 
(46i80 91 75040 
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m 

0 
0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
8.0 

10.0 
15.0 
20.0 
30.0 
ca 

F+(m) Equation (2.10) Equation (2.11) 

0 0 0 
5.923 x 5.923 x lo-' 5.923 x 
1.475 x lo-' 1.475 x 1.475 x lo-' 
3.372 x 3.372 x 3.313 x 
2.548 x 2.548 x 2.058 x 
9.352 x 9.354 x 10-2  - 
0.2077 0.2081 
0.3342 0.3365 
0.4409 0.4545 
0.5225 0.5629 - 
0.5825 0.6756 - 
0.6630 
0.7550 
0.8079 
0.8754 - 

0.9078 
0.9394 - - 
1 .o 

- 

- 

- 

- - 
- - 
- - 

- 

- - 

- - 

TABLE 1. Y+(m)  and approximations to Y+(m) 

Equation (2.13) 

- 
0.2441 
0.3724 
0.4643 
0.5331 
0.5864 
0.6637 
0.7556 
0.8082 
0.8755 
0.9079 
0.9394 
1 .o 

For large m, Abramowitz & Stegun give asymptotic series in inverse powers of m for 
the cross-products qo, ro and so. From these we obtain, to  order l/m2, 

52/21 3 1 
!P+(m) z 

4 m 2m2' 
(2.13) 

Table 1 compares the exact !P+(m) to the large-m and the two small-m 
approximations. The large-rn approximation is useful for qualitative purposes down 
to m = 2.6 and accurate to two figures at m = 5. Equation (2.10) is accurate up to 
m = 3.6, while (2.11) is accurate up to about m = 1.6. 

2.2. Cos y S  zero 
When GOS y S  = 0 equations (2.4a, b) decouple. Then 

w1 = isin y(1 +SX,) ( r 3 - r )  (2.14~) 

XI = BsinyAX,(l+SX,) ( & r 9 - ~ r 3 + 4 r ) .  (2.14b) 

The secondary flows are 

uz = 4 sin y( 1 + SX,) Asin y AX, S ( -& r7 + &r5 -& r3 + & r ) ,  

v8 = Q sin y( 1 +SX,) &sin y AX, S ( - & r7 - & r6 + &r3 -&r). 

(2.15 a)  

(2.15 b) 

7A' sin' y(  1 +SX,)' 
46 080 X, The flux equation is X , = l -  (2.16) 

valid for sin2y = 1, or S = 0, or both. Equations (2.14)-(2.16) could also have been 
derived from equations (2.6)-(2.7), (2.9), (2.11) for m+O. 
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2.3. Cos y S  negative 

When cos yS  is negative, solution is in terms of Bessel functions. Then 

w1 = AJl(mr) +BI , (mr) ,  (2.17 a )  

X = - r+-[AJ,(mr)-BI , (mr)] ,  Q m2 (2.17 b)  

(2 .17~)  

' h  h 

A = - -  q 
m3Jl(m) I ; ( m )  + J i (m)  I l ( m )  ' 

q J1 (m)  B = + -  
m3 J,(m)I ; (m)+ J i ( m ) I l ( m ) '  

The secondary flows are 

(2.17d) 

u2 = a tan yA(J,(mr) + Jl(mr))  - a tan y B(I , (mr)  - I l ( m r ) )  - 2Cr3 + 3 0 ,  

v 2  = tan y A [J3(mr) - Jl(mr)] - tan y B[13(mr) + I l (mr ) ]  + 4Cr3 + 3Cr, 

(2.18 a )  

(2.18 b)  

C = - i tan yAJ,(m)+itan yBl, (m).  
The flux equation is 

'2 Jll l  1 1 J, 
m W 2 m 2 W  

X,=l -  

(2 .18~)  

(2.19) 

where the argument (m) is omitted and where W equals Jlc + J; I,. 
Y-(m) is shown in figure 2. It is infinite a t  the zeros of W.  The first four zeros are 

a t  m x 2.87,6.145,9.335, and 12.495, intervals between zeros asymptoting to x .  (The 
zeros correspond to eigenfunctions for the vertical case, each indicating the onset of 
an unstable mode.) Y-, like Y+, is always positive. Y- tends with increasing m to a 
minimum value of g. Equations (2.10) and (2.11) modified by -m4 substituted for m4 
can be used to approximate Y- for small m. Also, (2.12) holds as written for both 
positive and negative cosy S. The modified (2.10) is accurate for m up to about 2.6 
and qualitatively correct to  its denominator's first zero (which occurs at m x 2.82). 
The modified (2.11) is accurate up to m FZ 1.4. 
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2.4. The velocity jields 
The solution for X is valid only as long as u2 and v2 are small compared to wl. Further, 
they should be small in absolute terms. I n  this section we establish ranges of y and 
A in which these criteria are met. 

We first discuss some overall characteristics of the velocity fields. For cosy S 
positive and m large, w1 is concentrated near the cylinder boundary. The width of its 
boundary current is O(l/m). The maximum value of Iw,J in the current is proportional 
to l/m3 while outside of the current w1 has an exponentially decaying dependence on 
m. lwllmax is quite small. For example, for m = 10 it is only about 5 x 10-41ql. X,, as 
will be shown in the next section, is limited to the range 0 to 1 and, following HR, 
we will only consider IS1 < 1. Thus, IqI is O(1sinyl). The azimuthal velocity v 2  also 
exhibits boundary-layer behaviour. It and uz are larger in the interior than w1 
because of their polynomial dependence there. The maximum amplitudes of both, 
like wl, exhibit a l/m3 dependence. At large m the maximum IuzJ and lwll are 
O(ltanyIIwllmax). Thus, both are much smaller than lwllmax when IyI is near 0' or 
- + 180". The radial velocity u2 does not exhibit boundary-layer behaviour and is weak 
near r = 1.  This can be seen in ( 2 . 7 ~ )  when one realizes that ber,(mr) and bei,(mr) 
ap1 roximately cancel ber,(mr) and beil(mr) when mr is large. 

For cosyS negative with m large, the velocities are greatest near the cylinder 
centre. For exam le, except near r = 1, wl behaves like Jl(mr), which a t  large mr 
decays like l/(mr)s. The lwll maximum is near the maximum of Jl(mr) a t  mr x 2. The 
magnitudes of the three velocities oscillate with m but the general trend, as for the 
cos y S  positive case, is a l/m3 decay. Except near 'resonance ', values of m (the zeros 
of W )  these velocities are small. For example, a t  m = 10, lwllmax x 3 x 10-3(ql. As with 
cos Y 

P 

positive, luzlmax and lw2lmax are W a n  y I1 wllmax). 

Iwllmax x 0.0481q1, lu2lmax x 1.65 x 10-61sinyAX,SqI, 

For cos y S  zero 

lw21max x 1.50 x 10-61sin y/ix,Sql. 

These magnitudes hold approximately for cos yS  non-zero for rn up to about 2. For 
comparison with the order of magnitude relationships given in the previous 
paragraphs, [sin y a ,  SI = m41 tan yI . 

From the above, i t  is apparent that for any m there are two ranges of y ,  centred 
on y = 0' and & 180', such that u2 and w 2  are small compared to wl. We have 
considered two measures of velocity magnitudes. The first, used above, compares 
maximum amplitudes. The second compares integrals of the velocities' absolute 
values. Writing w1 as qG(mr) and {u2, w2) as tan yq{u"(mr), v"(mr)}, we want, for the first 
measure, 

Itan yI < E ,  ltan yI 7 -. E .  
Mmax lclmax < 
Iwlmax IWlmax 

For the second measure, we want 

rEI dr dr 
Itan ylF < 8 ,  ltanYIF E .  

We define Iylmax(m, E )  as the maximum deviation of the cylinder from the up or down 
positions such that either set of constraints is met. Table 2 gives I ylmax for E = 0.1 for 
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COB y s  > 0 
lylmu, maximum IYI,,,.~, integral 

m I4nu (degrees) (degrees) 
1 4.7 x 10-2 89.8 89.8 
2 3.9 x 10- 86.9 87.5 
4 9.6 x lo-* 52.5 58.5 
6 2.6 x 24.8 25.5 
8 1.0 x 10-3 17.3 15.7 

10 5.2 x 10-4 14.7 12.3 
12 2.9 x 10-4 13.4 10.6 
16 1.2 x 10-4 12.2 9.1 
20 6.1 x lo-& 11.8 8.4 

1 4.9 x 89.8 89.8 
2 6.4 x 10-2 86.9 87.5 
4 2.1 x lo-' 48.0 51 .O 
6 4.5 x 10-2 17.4 14.8 
8 3.1 x 10-3 15.4 17.7 

10 2.8 x lo-* 16.6 12.5 
12 2.3 x 17.7 12.7 
16 1.5 x lo-* 18.0 11.9 
20 3.2 x 10-4 17.6 11.8 

COB y s  < 0 

TABLE 2. IZZI,,,~ and Iylmax aa functions of m. E = 0.1 

both amplitude measures. 12211,, is also given. For cosyS positive, Jylmax decreases 
monotonically with increasing m, asymptoting to about 11.2" with the maximum 
measure or 7.7' by the integral measure. For cosyS negative, Jylmax is oscillatory. As 
m increases, the oscillations become smaller, centring near 18' (maximum measure) 
or 12" (integral measure). By both measures, then, there is a range of y for which u2 
and wz are small compared with w1 for all m. In particular, HR's quasi-vertical case 
(y  x 1') is well within this range. 

In the vicinity of m equal to zero lylmax equals 90"-O(m4). A t  90" itself it is 
necessary to look at relative magnitudes in terms of A .  Then luelm, and 12relmax are 
about 3 x 10-4AXz(S((wll,ax. For E to be less than 0.1 lix,(Sl can thus range up to 
about 300. All HR's calculations of /uu,lSl fall well below this. 

The above discussion is subject to one important caveat. When Iyl> 90" the 
cylinder is heated from below. Convection can readily distort the temperature field 
for this case when GrPr is large. The approximation used herein of a fixed 
temperature field is then invalid. Large m, of course, implies large Gr. Our discussion 
of the flow at large m appears to be applicable generally for < 90" but is restricted 
to only small Pr for (yJ > 90". 

3. Results from the flux equations 
We will be comparing our solutions for X ,  to those of HR and some comments are 

needed on how this is done. HR's numerical work was done for cylinders with lengths 
(aspect ratios) of from 3 up to 12. Almost all of their computations show sizable 
parallel flow regions away from the cylinder endwalls. The one major exception is for 
S < 0.02 for their quasi-vertical study. A cylinder length of 3 was used for the quasi- 
vertical case and it is apparently too short to exhibit a parallel flow region when S 
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is small. All HR’s studies present graphs of X(x) a t  r = 0 for various A ,  S,  and y. 
Rough approximations to their calculated mid-cylinder X, can be determined from 
them. A more accurate method of determining their X, is available for HR’s low 
Grashof number studies. For those, HR plot mid-cylinder X, as a function of 
maximum parallel flow velocity. They then separately plot this velocity as a function 
of A ,  S ,  and y. In both cases, data points as well as interpolatory curves are plotted. 
We found it possible to relate data points on the two plots and thus directly find their 

3.1. General comments on the solution 
The fact that Y, is positive has important consequences for solutions to (2.9), (2.19). 
From it, X, must also be positive - and from that, 0 < X, < 1. The me dependence of 
Yk at small m means that the right-hand sides of (2.9)-(2.19) are 1 when X, equals 
zero. When X, = 1 the right-hand sides are less than one. Thus, there must be at  least 
one solution and the number of solutions must be odd. 

The most effective solution procedure for (2.9)-(2.19) is to choose m, evaluate 
Y,(m)  and then find X, as a function of S and y from the resulting quadratic 
equation. This gives 

x =-  2 S ( l + C ) -  1 S-2G +(i(S-2(7,’ 4S2(1+G)2 - S2(1+G)  ” ) ”  ’ (3.1) 

where G(y, m) = tan2y Y * ( m ) .  Once X, is found, A can then be found from m as 
A = m’/lcosySIX,. There &re no solutions to (3.1) in the range 

2G - (4G2 + 4G): -= S < 2 6  + (4G2 + 4G)i 

(S+ 1) G > is2. or for 

At the double root of (3.1), X, = 1/(S+2). There are always solutions to (3.1) when 
s < -1.  

We now consider solutions for A + 00. This is helpful for understanding the overall 
solution structure. One solution is then always X, x 0 ,  m x 0. More specifically, 

x, x 46080 while m z 080/cosys l~ 
7 sin2 y A2 ’ 7sin2yA ’ 

Additional solutions, if they exist, are for m+ co. For the case of cos y S  positive, 
Y+ -+ 1 and G -+ tan2 y. Multiple solutions exist if 

s < 2 tan2y - (4 tan4y + 4 tan2y): 

or s 2 2tan2y+(4tan4y+4tan2y)4. (3.3b) 

( 3 . 3 4  

Satisfaction of either constraint leads to a total of three solutions, as A +  co, for a 
given A .  For cosy8 negative, Y- does not converge to any value but it does go to a 
minimum value of t .  Then multiple solutions can occur when 

s < gtanzy-(~tan’y+5tanzy); ( 3 . 4 ~ )  

s 3 5 tan2 y + (q tan4y + 5 tan2 y) i .  (3.4b) 

As y+in, bounds ( 3 . 3 ~ )  and (3.4b) approach S < - 1. Because of the oscillations of 
Y-, it appears possible that satisfaction of (3.4) may lead, as A +  00, to an infinite 
number of solutions. 

A similar caveat exists for this section as for 52.4. Bounds ( 3 . 3 ~ )  and (3.4b) are for 
the heated-from-below case. They are most likely applicable only for P r  + 0. 
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FIGURE 3. &(A) for the horizontal case for S equal to +1.0, +0.5, 0, -0.25, -0.5, -0.7, 
-0.8, -0.9, -0.95, and - 1 .  

3.2. The case cos y S  = 0 

When S = 0 
1 

. . 7A2sin2y' x, = 

i- 46080 . 
When the cylinder is horizontal 

1 
7A2(1 +SX,)2'  x, = 

+ 46080 

(3.5) 

The second case could be written and solved as a cubic equation. The above form, 
however, is useful for iterative calculations when S is positive. The right-hand side 
of (3.6) then decreases monotonically with increasing X, and there is necessarily only 
one real solution. 

Figure 3 shows X, as a function of A for various IS1 G 1.  To have three real 
solutions, it turns out that S must be less than -0.89. The minimum A for this to 
occur is about 140.9. At S = - 1 the threshold A is (-)a x 162.3. As A + 00 there 
are, in agreement with (3.4), three real solutions only for S < - 1. (For S = - 1 one 
of the three solutions is identically X, = 1). Where there are multiple solutions, the 
middle solution, in terms of ordering by X,, is probably unstable. The upper solution, 
consistent with the degree of Soret separation, has the lowest rate of flow and the 
lower solution has the highest. It would be interesting to find out if the upper and 
lower solutions are stable over a common range of A .  HR's work for the horizontal 
case was limited to S 2 -0.75 so they had no chance to observe any non-uniqueness 
phenomena. 

Our results for the horizontal case are very close to HR's. For example, for 
A = 60, S = -0.5, equation (3.6) gives X ,  = 0.846, while HR obtained about 0.85. 
For A = 120, S = 0.5, (3.6) gives 0.263, while HR obtained 0.26. Table 3 gives addi- 
tional comparisons. 

The solution for the case S = 0 is exact (since then there are no secondary flows). 
Results are again very close to those of HR. For A = 60 with the cylinder horizontal, 
(3.5) gives X, = 0.646, while HR obtained about 0.63. At y = 45" and A = 60 (3.5) 
gives X ,  = 0.785 while HR obtained about 0.78. Again, table 3 gives additional 
comparisons. 
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Y (degrees) 
135 
135 
135 
135 
90 
90 
90 
45 
45 
45 
45 
45 
22.5 
22.5 
22.5 
22.5 
22.5 

1 .o 
1 .o 
1 .o 
1 .o 

A 
60 
60 

180 
180 
60 

180 
180 
60 
60 

180 
180 
180 
60 
60 

180 
180 
180 

28 920 
16800 

289 200 
289 200 

S 
0.5 

-0.5 
0.5 

-0.5 
0.5 

-0.5 
0.5 

-0.5 
0.5 

-0.5 
0 
0.5 

-0.5 
0.5 

-0.5 
0 
0.5 
0.02 
0.02 
0.05 
0.1 

XAHR) 
0.58 
0.95 
0.17 
0.74 
0.52 
0.18 
0.14 
0.85 
0.75 
0.22 
0.27 
0.32 
0.96 
0.93 
0.37 
0.58 
0.73 
< 0.4 

0.88 
0.97 

XAJ) 
0.591 
0.958 
0.185 
0.752 
0.533 
0.201 
0.15 
0.857 
0.746 
0.239 
0.289 
0.34 
0.943 
0.917 
0.376 
0.581 
0.726 
0.049 
0.4 
0.902 
0.973 

TABLE 3. Comparison of HR’s results (HR) to the present ones (J) for X,, for various 7, A, and S .  
HR’s results were read from charts and are given only approximately. HR’s results for A = 28920 
are for non-parallel flow. 

3.3. The quasi-vertical case : positive S 
For this case, HR considered flow for A up to 2.892 x lo6 (Cr = 4820), with m ranging 
up to about 20. m is large enough to use the large-m approximation (2.13) or, for 
qualitative purposes, Y+ can be approximated simply as 1. As implied by the bounds 
(3.3) and (3.4), the quasi-vertical case has significant regimes of non-uniqueness. A 
jump from one solution to another will be shown to explain some of HR’s results. 

For the quasi-vertical case, tan y can be approximated as y .  Approximating Y+ as 
1 and using y Q 1, (3.1) simplifies to 

(3.7) 

The cutoff for large-m solutions is thus at S x 2y. This cutoff can be matched to one 
result of HR. HR’s quasi-vertical numerical calculations were restricted to y = lo. In 
their large-A calculations they observed a sudden transition from large to small X, 
as S decreased below about 0.03. Equation (3.7) predicts the disappearance of the 
large-m solution - and, thus, a discontinuous transition to small X, - at  S = 0.0349. 

This estimate of the transition S can be improved by use of the large-m 
approximation given by (2.13). In HR’s large-A calculations m at the transition is 
about 8.11. Equation (2.13) can be applied to (3.7) by modifying y2 to y2!P+(m). We 
then obtain a transition S of 0.0304. Finally, the exact equation (3.2) yields 0.0309. 
These are now in very close agreement with HR’s numerical results. 

Equations (2.13), (3.7), (3.2) also give similar results to HR for larger S. For 
example, for S = 0.05, for the large-A calculation, HR obtained X, x 0.88: m is then 
about 10.6. Equations (2.13), (3.7) yield X, x 0.887 and (3.2) gives 0.902. 

Figure 4 shows solution curves calculated from the exact equation (2.9). Multiple 
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FIGURE 4. X,(A) for y = 1" for S equal to -0.125 to -0.005 by intervals of 0.015, and 0.005 to 0.06 
by intervals of O.005. For negative S, solutions are shown only for m < 2.87 (up to the first zero of 
w). 

solutions can occur for S greater than about 0.023. As with the horizontal case (and 
as is always true) the lower the solution branch the greater the flow rate. 

Figure 4 is in good agreement with HR's (1988) figure 10 except for small S in the 
neighbourhood of A equal to 20000. In that region the flow exhibits sharp, 
continuous transition from significant to small separation with increasing A .  The 
present calculations indicate this transition takes place for a smaller A than do HR's. 
For example, for S = 0.02 HR calculate the centre of the transition to be at  A x 
25000 while we find the centre at about 15000. Part of the discrepancy is due to the 
small aspect ratio that HR chose for their quasi-vertical calculations. In their small- 
S calculations the resulting flow is not quite parallel even at mid-cylinder. Endwall 
effects are important throughout the cylinder and these increase their calculated 
separation. The major cause of the difference, however, is probably our imposition of 
the temperature field. In the quasi-vertical case, HR's calculations show that the 
temperature field and convection interact so as to reduce the buoyancy forces that 
drive the flow. As HR point out, this effect is particularly large when S is small. The 
resulting reduction in flow then allows a larger equilibrium X,. 

3.4. Additional resulte 
Figure 4 also shows solution curves for the quasi-vertical case for negative S. These 
solutions are for m restricted to being below the first singularity of Y-. As HR 
conjectured, the amount of separation continues to diminish with decreasing S. Non- 
unique solutions exist for y = lo for S less than about -0.034. Figure 5 shows 
solution curves for S equal to -0.05 and -0.10. The number of solutions appear to 
increase steadily with increasing A .  It seems likely, however, that all these solutions 
except the ones shown in figure 4 are unstable. Investigation of solution curves for 
lyl < 90" for other negative S showed rapidly and widely varying patterns of 
solutions. 

Solutions were also investigaged for various Iyl < 90' for positive S. The 
investigation was limited to X < 1. We found that regions of multiple solutions 
diminished as y increased. This, of course, is expected from (3.2), (3.3b). For S < 1, 
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FIQURE 5. X,(A) for y = 1' for (a) S = -0.05, (a) S = -0.10. 

multiple solution regions disappear at about y = 28'. Figure 6 shows X,(A,  S) for y 
equal to lo', 15'' 20" and 25'. 

HR present a number of results for various y and S at low A .  Table 3 compares 
some of their results to ours. Again, agreement is found to be very good. 

4. Concluding comments 
Parallel flow solutions, despite their apparent straightforwardness, can still be 

useful as a research tool. This is particularly true in materials transport problems, 
where interaction between component gradients and convection can lead to rather 
complicated phenomena. We have shown that some of HR's numerical results can be 
matched by fairly simple solutions. The non-uniqueness of these solutions explains 
some transition phenomena that they observed in the quasi-vertical case. We 
have uncovered other instances of non-uniqueness that may be worth further 
investigation. 

The existence of multiple solutions brings up the intriguing question of whether 
more than one can be stable and then to the question of what initial conditions lead 
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FIGURE 6(a, b ) .  For caption see facing page. 

to one or the other. It may be possible that two such solutions can coexist - that  a 
cylinder can have alternating pockets of different types of flow. Jacqmin (1986, 1989) 
shows that this type of behaviour occurs in some convection-diffusion systems in 
porous media. He considered a gravity-segregating oil-gas mixture subject to a 
horizontal temperature gradient. The precisely analogous situation for Soret diffusion 
is, for S > 0, a horizontal channel cooled from below and subject to a weak horizontal 
temperature gradient. 

In analysing the problem we have chosen the simple course of idealizing the 
temperature field as imposed. We emphasize that this has been for clarity and that 
the solution procedure used here can, at least in principle, be applied with an 
unknown {r ,  0)  temperature variation and an arbitrary number of components. The 
key here is that the equation system for the temperature and the components 
(assuming constant coefficients) is of the form 

where A is a constant coefficient matrix, T is included in the Xi, and Xi,, is the axial 
gradient of X i .  The X1,* can be decoupled from each other according to 
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FIGURE 6. X,(A) for (a)  y = lo", (6)  y = 15', (c) y = ZOO,  and ( d )  y = 25". S for (a)  is from 0 to 0.6 
by intervals of 0.05. S for (a) is from 0 to 1 by intervals of 0.1. 

The fourth-order equation for w1 becomes 

If T is fixed on the walls then and w1 are coupled through the boundary conditions. 
If the walls are insulated then the boundary conditions for w1 are the same as for 
equations (2.4). In either case, once and w1 are solved for, the remaining X,,, can 
be found one by one. The X t , z  can then be determined by solving the resulting 
no-flux equations. 

REFERENCES 
ABRAMOWITZ, M. & STEGUN, I. A. 1964 Handbook of Mathematical Functions. US Government 

Printing Office. 
HART, J.  E. 1971 On sideways diffusive instability. J .  Fluid Mech. 49, 27S288. 
HENRY, D. & Roux, B. 1986 Three-dimensional numerical study of convection in a cylindrical 

HENRY, D. k Roux, B. 1987 Three dimensional numerical study of convection in a cylindrical 
diffusion cell : its influence on the separation of constituents. Phys. Fluids 29, 3562-3572. 

diffusion cell : inclination effect. Phys. Fluids 30, 1656-1666. 



372 D .  Jueqmin 

HENRY, D. & Roux, B. 1988 Soret separation in a quasi-vertical cylinder. J .  Fluid Mech. 195, 
175-200. 

JACQMIN, D. 1986 Convection of a gravity segregating fluid forced by horizontal temperature 
gradient: An energy stability analysis. In Mathematics Applied to Fluid Mechanics and 

JACQMIN, D. 1989 The interaction of natural convection and gravity segregation in oil-gas 

PALIWAL, R. C. & &EN, C. F. 1980 Double-diffusive instability in an inclined fluid layer. Part 2. 

Stability, pp. 263-273. SIAM. 

reservoirs. Reservoir Engng (to appear). 

Stability analysis. J .  Fluid Mech. 98, 76S785. 


